Ceramic Electronics 3D Printing Receives
Earlier this year, the US Department of Energy (DOE) said it would grant $175 million to 68 R&D projects to create disruptive technologies that can strengthen the nation’s advanced energy initiatives, including electric vehicles, offshore wind, storage, and nuclear recycling. Among the awardees is Materic subsidiary Synteris, which received $2.7 million to accelerate the development of 3D-printable ceramic packaging for power electronic modules.Get more news about Electronic Ceramics,you can vist our website!
This funding is part of the DOE’s Advanced Research Projects Agency-Energy (ARPA-E) OPEN 2021 grant program. Synteris will work on its proposal with the National Renewable Energy Laboratory (NREL). The duo will attempt to improve the thermal management, power density, performance, and lifetime of ceramic packaging for power electronic modules.
Considered a growing market valued at $26.6 billion in 2021, power electronics deals with high voltage and current processing to deliver power for a wide range of needs, like DC/DC converters used in cell phones or AC/DC converters for computers and televisions, while large-scale power electronics are used to control hundreds of megawatts of power flow across the country. A great example of this is how researchers at the NREL are building advanced power electronics systems that control the flow of electricity to propel large and advanced electric machines, including those used in planes, trains, and heavy-duty transportation.
However, with systems becoming smaller and more lightweight (like in automotive), the need to handle higher power levels and operating temperatures are greater, and many see the material used in the power module package as a bottleneck. With support from the ARPA-E programs and NREL researchers, Synteris wants to create technology that will substantially improve the design, manufacturability, and function of power modules used in electric vehicles, aircraft, as well as related applications including for the military.
Existing power modules contain flat ceramic substrates that serve as both the electrically insulating component and thermal conductor that transfer the large heat outputs of these devices. But Synteris proposes an additive manufacturing process that would replace the traditional insulating metalized substrate, substrate attaches, and baseplate/heat exchanger with an additively-manufactured ceramic packaging that acts as both an electrical insulator and heat exchanger for better thermal management.
Based in Baltimore, Maryland, Synteris specializes in materials for high-temperature ceramics 3D printing. The funds for this project will support the team’s small-scale research and development activities to use AM to print 3D ceramic packaging for power electronic modules that act as both an electrical insulator and heat exchanger for a dielectric fluid. Specifically, the project team will develop materials processing for 3D printing of the power electronic module, build and test the module, and develop and test a heat exchange system for the power electronic module. If successful, the project will test and validate a unique manufacturing system for better performance, lifetime, and form factor of power modules in electric vehicles.
The Wall